基于MBD的三维数字化装配工艺设计及现场可视化技术应用(一)
2.2 PBOM数据导入
将来自协同平台的XML格式的PBOM导入DELMIA的DPE中,PBOM中的零组件信息(工艺路线、批架次、工组件等)会通过程序自动关联CGR模型、CATIA V5模型、smgxml模型3种格式的数据。并导入产品模型的坐标位置信息。在DPE中构建全机或部件的PBOM结构树。数据导入流程如图4所示。
图4 PBOM数据导入
2.3 工艺分离面的划分
完成数据导人工作后,在DELMIA系统的MA(Manufacturing Assembly)中根据三维产品模型在三维数字化环境下进行全机、部组件工艺分离面的划分,结合PBOM结构树确定各工艺装配部件、组合件需要装配的组件及零件项目,构建工艺部件、组件模型结构。在MA中进行工艺分离面划分如图5所示。
图5 MA中进行工艺分离面划分
2.4 全机或部件装配工艺仿真
针对工艺分离面划分结果在DPM中进行全机及部件级工艺仿真,验证工艺分离面划分的合理性,并进行优化。
2.5 部件装配方案的设计
在工艺分离面划分优化的基础上,在DPE的PROCESS结构树上对各工艺部件进行装配流程设计,划分下一级组件装配单元,确定在各组件装配的零组件项目,构建顶层MBOM结构树,关联来自工艺部件的组件装配工艺模型。确定装配工艺基准和装配定位方法,并规划各组件之间的装配流程。
2.6 部、组件装配AO的确定
在部、组件划分的基础上,依据分配到部、组件项目的装配工艺模型在DPE的PROCESS结构树上进一步进行部、组件装配过程设计,确定各部、组件所属零组件的装配顺序,规划完成装配的AO项目,编制AO号,关联每本AO需要装配的零组件项目。
2.7 工装订货单的编制及工装设计
工艺部门依据工艺设计内容提出装配工装、夹具、刀具的订货技术要求。工装部门根据订货技术要求,设计装配型架、地面设备、专用工、刀、量具的三维数模。
2.8 工装数据的导入
将来自于企业协同平台的工装等资源三维模型数据分别以CATIA V5模型和格式导入DELMIA系统,建立资源结构树,并分别关联到PROCESS工艺设计结构树上的部组件装配项目上。
2.9 详细工艺设计
在三维数字化环境下确定该装配工艺过程零组件、标准件、成品等装配顺序,明确装配工艺方法、装配步骤,进行AO下工步的详细设计,完成本装配过程的工步规划设计,并将产品零组件和工步关联。选定该装配过程所需要的工装、夹具、工具、辅助材料等一系列的制造资源,并将工装与工位关联。依据产品连接定义分配该过程所需要的标准件,形成用于指导生产的AO装配信息。
2.10 部、组件装配仿真
产品及资源三维模型在工步上关联后,依据AO内容及设计好的装配工艺流程,在DPM中通过对每个零件、成品和组件的移动、定位、夹紧等操作进行产品与产品、产品与工装的干涉检查,当系统发现存在干涉情况时报警,并显示出干涉区域和干涉量,以帮助工艺设计人员查找和分析干涉原因。同时通过对产品装配和拆卸过程进行三维动态仿真,可以验证每个零件按工艺设计的装配顺序是否能无阻碍的装配上去,以发现工艺设计过程中装配顺序设计的合理性。对于开敞性、可视性、可达性、可操作性较差的部位可以将标准人体的三维模型放人虚拟装配环境中进行人机工程仿真,模拟操作者的操作过程以便发现操作空间大小是否满足装配需要,操作者身体或肢体能否到达装配位置、是否看得见等问题。仿真结果通过仿真报告提交产品设计、工装设计等部门进行优化。
2.11 三维装配指令编制
通过部、组件装配仿寞,对产品、工装、AO内容及装配顺序等进行优化后,依据优化后的工艺设计结果进入DELMIA的WKC(Work Instruction Composer)中进行各工步三维可视化视图设计,将每个工步所要表达的工艺信息通过三维轻量化视图表达,包括标准件信息、装配尺寸标注、制孔要求、定位要求、工装使用要求,其形式如图6所示。
图6 WKC中三维可视化文件编制
3 现场可视化技术应用
3.1 现场可视化文件输出、管理
由于采用MBD技术以后,生产现场不再发放二维图纸,为了满足装配生产需要,中航工业陕飞采取了利用装配仿真视频、AO和三维工步视图指导现场装配作业的解决方案,具体方法是将在DPE中完成的部组件工艺规划、设计内容提取到CAPP中的AO模板中,包括AO内容页、辅材配套表、标准件配套表、零件配套表等文档信息,同时输出DPM中部组件的仿真视频和WKC中的三维工步视图,通过Windchill协同制造平台进行审签发放和管理。
3.2 现场可视化应用
通过装配现场可视化技术,使MBD技术在车间“落地”,它是将产品的装配仿真验证文件、三维工作指令以及工艺设计文件等工艺信息传递导入到企业的MES系统,发送到车间现场,操作人员通避现场触摸屏,在MES系统里查询产品工艺装配信息,可以直接查看三维装配指令及相关三维仿真,以更直观的方式了解产品的装配属性,理解产品的装配工艺和工艺流程,从而提高装配工作效率和准确性。
MBD技术现场具体应用过程是,首先运行MES系统,通过查询工位设备号,确认某个部件的装配工位,查看AO文件名称、文件号以及装配该部件的工艺装备,然后输入负责该部件装配工作的操作者证件号,进入该产品的具体生产信息界面,对应AO名称和文件号,查看产品的装配仿真验证动画,直观地全面了解产品的装配流程,查看三维工作指令,获取产品的定位、装配尺寸等装配信息,查看AO文件,获取产品的装配零件及详细工作内容,最终完成产品的装配,如图7所示。
图7 现场可视化
4 结论
通过基于MBD的三维数字化装配工艺设计及现场可视化技术应用研究及实施,打通了基于MBD的产品设计与工艺设计及现场可视化装配的技术路线。从实施情况看三维数字化装配工艺设计及现场可视化系统在数字化制造中有以下优点:
(1)实现了产品设计、工艺设计、工装设计的并行工程,缩短了产品研制周期,减少了开发成本。
(2)通过装配过程三维仿真验证,及时发现了产品设计、工艺设计、工装设计存在的问题,有效地保证了产品装配的质量。
(3)通过现场可视化系统的应用,三维装配仿真通过三维数据直观地显现了装配过程,使装配操作者更容易理解装配工艺,减少了装配过程中的反复和人为差错。
(4)使工艺研制更便捷、更直观,特别在新产品研制中,通过三维数字化装配工艺设计使得工艺方案的制定、技术决策更准确、便捷。
(5)通过多个系统的集成,使设计、工艺、生产的信息可以更方便被调用,数据流通更加畅通。
(6)为企业提供了承上启下的工艺设计平台,便于在此基础上进行创新开发,为企业的质量管理、生产管理等系统提供上游工艺信息。
应用中的不足之处:
(1)目前人机仿真操作比较繁琐。
(2)装配仿真时模型作为刚性件处理,无法模拟仿真零组件变形后的装配情况,主要反映在某些钣金零件的仿真以及部组件自重引起的变形调整的仿真。
(3)目前采用的现场可视化方案虽然解决了MBD技术的现场应用,但在现场应用中由于可视化终端设备相对固定,操作者在飞机内部或距离终端设备较远的部位操作时不方便,还需研究开发便携式可视化终端设备及其数据管理方式。
5 结束语
基于MBD的三维数字化装配工艺设计及现场可视化技术是现代航空数字化制造中的一门新兴学科,该项技术的应用将引发飞机装配的历史性变革,将在技术和经济方面取得巨大的效益,为企业提升企业的核心竞争力奠定坚实的基础。
核心关注:拓步ERP系统平台是覆盖了众多的业务领域、行业应用,蕴涵了丰富的ERP管理思想,集成了ERP软件业务管理理念,功能涉及供应链、成本、制造、CRM、HR等众多业务领域的管理,全面涵盖了企业关注ERP管理系统的核心领域,是众多中小企业信息化建设首选的ERP管理软件信赖品牌。
转载请注明出处:拓步ERP资讯网http://www.toberp.com/