作为国家重点发展的五个战略性产业之一的物联网,已成为计算机和互联网之后的新的信息技术浪潮。物联网的目标是全面感知,在互联网的技术和平台基础上,搭建一个人与物、物与物相连的平台。近几年,随着物联网研究的不断深入以及物联网应用的不断普及,它为信息社会的进一步发展带来了新的变革,同时,物联网信息安全问题也逐渐引起了业界较大的关注。
1、物联网感知层技术
物联网以感知为核心,它的三个基本特征是:全面感知、可靠传输与智能处理。它们分别由物联网的三大部分感知层、网络层以及应用层来实现。
物联网的技术核心是感知层技术,它与人体的皮肤与五官的作用相近,用于感知物体并采集信息。感知层由传感网和感知设备两大部分组成,主要包括射频识别技术(RFID)、WSN 传感技术、全球定位系统、激光扫描、红外感应、视频技术、条形码扫描等。近几年来,射频识别技术(RFID)和WSN传感技术都取得了快速的发展。
1.1 射频识别技术(RFID)
射频识别技术,简称RFID,是一种非接触式的自动识别技术,兴起于上个世纪90年代。作为快速、实时,并能够准确采集与处理信息的高新技术,该技术被公认为本世纪10大重要技术之一。RFID一般包括电子标签、阅读器和天线三个组成部分。它采用无线射频方式,能够实现双向的数据通信,识别目标对象继而获取相关数据。RFID系统组成如图1 所示。
图1 RFID系统组成
电子标签内保存有一定格式的电子数据,用来标识物体基本信息。它们嵌入或附着在物品中,实现对物品的追踪和定位。电子标签具有存取信息的时间短、读取信息的距离远的优点。此外,由于电子标签的信息存取均设有密码保护,所以,它的安全性得到了保证。阅读器向电子标签发送命令,电子标签将内存的标识信息回送给阅读器,它们之间传送信息是在通信协议的基础上进行的。天线是一个“桥梁”,在电子标签与阅读器之间发挥着射频通信功能。总之,借助于RFID,人们可以很轻易地对各类物品进行标识和获取信息。业界人士认为,RFID将成为未来几年内代替条形码的关键技术之一,将被广泛地应用于物联网智能交通、智能安防和智能购物等领域。
1.2 WSN传感技术
传感技术是一种多门学科交融的现代科技,它主要研究在自然物品上获得信息,并对其进行识别和处理。传感器是传感技术的核心,它能够对物联网中物物之间和物人之间进行信息交互。无线传感器网络(WSN)由大量微型的传感器节点组成,这些节点被部署在监测环境中,形成一个自组织的无线通信网络。WSN感知、采集和处理整个网络中感知对象的数据信息,并将这些信息发送给观测者。WSN的缺陷是它仅能获取感知对象的标量信息,由此,无线多媒体传感器网络应运而生,它在WSN的基础上增加了获取图像、声音和视频等数据信息的功能。WSN体系结构如图2 所示。
图2 WSN体系结构
2、物联网感知层信息安全分析
如前所述,感知层感知物理世界信息的两大关键技术是RFID和WSN传感技术。因此,探讨物联网感知层的信息安全,应着重考虑RFID和WSN传感技术两个方面的安全问题。
2.1 RFID安全问题
在物联网感知层体系结构中,每个RFID都是一个单独的网络节点,它们经过网关被接入到网络层。因此,每个RFID节点的信息安全就决定了RFID整个系统架构下的信息安全。RFID技术安全问题体现在以下几个方面:
(1)信息泄露。在RFID标签使用者不知情时,攻击者非法拷贝或窃取标签信息,导致物品信息被泄露。
(2)标签追踪。攻击者利用RFID标签上的固定信息,对其进行追踪和定位,导致隐私被泄露。
(3)重放攻击。攻击者采用一些专门的手段,把窃听到的物品信息再次传送给合法的阅读器,对系统进行攻击。
(4)复制攻击。攻击者复制合法用户的RFID标签信息,顶替合法的用户身份,进而对系统进行攻击。
(5)伪造攻击。攻击者对RFID标签信息进行伪造,伪造信息的内容和合法用户的身份,使信息和用户身份失去真实性。
(6)信息篡改。攻击者对窃听到的消息进行蓄意篡改,使信息失去完整性,然后将篡改后的信息传送给原来的接收者。
2.2 WSN传感技术安全问题
WSN的特点是节点资源有限,存储能力、通信能力与处理能力有限以及拓扑结构复杂等。它的技术安全问题集中在以下两种情况:
(1)物理破坏:WSN的节点分布在自然空间里,攻击者可以使用外部手段,较轻易地对其中的某一节点实施破坏,对它们进行物理上的修改,并使用它们来干扰正常的网络节点运行。网络因普通节点俘获造成传输密钥泄露而受到安全威胁,或因完全控制产生整个网络的安全威胁。
(2)攻击:攻击者通过各种方式实现对网络的攻击,形成安全威胁。如:耗尽攻击、拥塞攻击、非公平攻击、拒绝服务攻击、节点复制攻击、多重身份攻击等。
3、物联网感知层信息安全技术
针对物联网感知层存在的上述安全问题,提出以下技术方案。
3.1 RFID安全技术
(1)标签保护
电子标签在RFID中发挥着重要的作用,且电子标签的信息容易被窃取、复制、伪造和篡改。因此,对电子标签的保护措施显得尤为关键。最有效的措施是控制标签的使用条件,设置某种条件下标签失效。在具体应用中,当商品交易完成时,为了防止标签信息的泄露,可“杀死”商品的RFID 标签,或者使其进入“休眠”状态,使标签无法正常工作。另外,为了避免标签被攻击者识别,可以通过铝箔购物袋(法拉第屏蔽)或者电子设备来主动发射干扰性信号,使攻击者不能捕获到正确的标签信息。
(2)加密机制
密码技术是通信双方按照约定的规则进行信息变换的一种保密技术。以密码学为基础,使用密码算法和安全认证机制,来实现RFID系统的信息安全保护,是当前物联网RFID加密机制研究的热点。许多安全认证协议被提出,包括Hahs-Lock协议、Hash链协议、Hash-base IDvarition协议、David的数字图书馆RFID协议、交互认证协议、LCAP协议和分布式RFID询问- 响应认证协议等。这些协议的提出,对RFID系统的信息安全起到了有效的保障。
当前,RFID的标准多样,相关安全评估标准缺失,给RFID安全机制的设计与评估带来了极大的挑战。建议从物联网实际应用的安全需求情况出发,对RFID系统安全等级进行划分,将RFID信息的机密性、完整性、身份鉴别、访问控制、密码管理和密钥算法等多方面密码安全因素划分成不同的安全级别,针对不同的级别实施各种有效的保护措施,并针对各安全等级的不同安全需求设计出各自的安全机制。另外,为了保证RFID 系统安全性,应采用高安全等级的密钥管理系统,在电子标签原有安全性基础上再增加一层保护。
3.2 WSN安全技术
对于WSN 的安全保护,应加强对WSN的密钥管理控制、建立安全路由、增加节点认证、访问控制机制、入侵检测机制等的管理方式。
(1)密钥管理。密钥管理是信息安全技术的核心,更是WSN安全技术的核心。密钥管理主要有4种协议:简单密钥分布协议、动态密钥管理协议、密钥预分布协议、分层密钥管理协议。
在简单密钥分布协议中,所有节点都使用相同的密钥,发送方用这个密钥加密,接收方也用这个密钥解密。这种密钥分布协议占用的内存很少,显而易见它的安全性也是最差的。因而,在WSN技术中,很少采用这一协议。在动态密钥管理协议中,根据用户需要,周期性地更换节点的密钥,形成动态的密钥管理方式。这种密钥分布协议能够有效保证网络的安全。在密钥预分布协议中,网络节点在部署前就被分配一组密钥。节点被部署后,传感器节点建立节点共享密钥并再分配密钥。这种密钥分布协议同样能够有效保证网络的安全。在分层密钥管理协议中,采用LEAP协议,它是一种典型的确定型密钥管理协议,使用多种密钥机制共同维护网络的安全。在每个节点中,分配4个密钥,分别是预分布的基站单独共享的身份密钥、预分布的网内节点共享的密钥组、相邻节点共享的邻居密钥和簇头共享的簇头密钥。这种密钥分布协议的防护措施最高效,也是最安全的。
WSN密钥管理方式可分为对称密钥加密和非对称密钥加密两种。对称密钥加密的特征是通信的双方使用完全相同的密钥,发送方使用这个密钥进行加密,接收方也使用这个密钥进行解密。这种密钥加密技术的密钥长度不长,计算、通信和存储开销相对较小,比较适用于WSN,因而是WSN密钥管理的主流方式。而非对称密钥加密是指节点使用不同的加密和解密密钥,由于对节点的计算、存储、通信等能力要求较高,一直以来被认为不适用于WSN。但是,近期研究表明,非对称密钥加密在优化后能适用于WSN。从信息安全的角度考虑,非对称密钥体制的安全性一定会远远高于对称密钥体制。
为解决WSN节点的物理破坏问题,可以在节点中使用抗窜改设备,为节点保护增加一层保护层。可以增设物理破坏感知机制,对物理破坏提前发出预警。另外,可以采用轻量级的对称加密算法对一些敏感信息进行加密存储,以保护信息的安全。
(2)安全路由。物联网的特殊架构使得它对路由安全的要求较高。因此,应当根据物联网不同应用的需求,采用合适的安全路由协议,以保证数据安全地从某一节点到达另一节点。同时,应尽可能少地消耗节点资源,保证节点的高效运行。物联网安全路由技术中有要采用SPINS安全框架协议,它包括SNEP协议及μTESLA协议两个部分,其中的SNEP协议用来实现通信的机密性、完整性和点点认证;而μTESLA 协议用来实现点到多点的广播认证。SPINS安全框架协议有效地保证了物联网路由安全,但是,SPINS协议还仅仅是个框架协议,并没有指出实现各种安全机制的具体算法。因此,在具体应用中,还应考虑很多SPINS协议的实现问题。
(3)节点认证。节点认证可以防止未授权的用户访问物联网感知层的节点和数据,有效保障感知层的信息安全。目前,传感器网络中主要的节点认证技术有:基于轻量级公钥算法的认证方法、基于预共享密钥的认证方法、随机密钥预分布的认证方法和基于单项散列函数的认证方法。在节点布设时,应当充分考虑到具体的应用需求和节点的实际能力,采用相应认证机制。
(4)访问控制。对网络中信息资源的访问必须建立在有序的访问控制前提下,对不同的访问者,应规定他们的操作权限,如是否可读、是否可写、是否允许修改等。对WSN中所有信息资源进行集中管理,保障信息资源的安全访问。
(5)入侵检测。入侵检测是一种主动保护系统免受攻击的网络安全技术,它通过在网络的若干关键节点处监听和收集信息,并对其分析,从中找出问题,及时地阻断和跟踪,对网内的节点行为进行监测,及时发现可疑行为。物联网中的节点分布非常广泛,且安全性相对薄弱,因此宜采用分布式入侵检测机制。
4、结束语
当前环境下,物联网得到了飞速的发展,然而,安全问题在很大程度上制约着物联网的进一步发展。作为物联网的技术核心,感知层信息安全是我国物联网发展能够持续有效推进的关键。本文对物联网感知层技术进行阐述,对感知层信息安全进行分析,针对感知层两大关键技术RFID和WSN传感技术提出了一些安全技术措施。
核心关注:拓步ERP系统平台是覆盖了众多的业务领域、行业应用,蕴涵了丰富的ERP管理思想,集成了ERP软件业务管理理念,功能涉及供应链、成本、制造、CRM、HR等众多业务领域的管理,全面涵盖了企业关注ERP管理系统的核心领域,是众多中小企业信息化建设首选的ERP管理软件信赖品牌。
转载请注明出处:拓步ERP资讯网http://www.toberp.com/
本文标题:物联网感知层RFID和WSN信息安全技术
本文网址:http://www.toberp.com/html/consultation/10839514171.html